Applied Nanotech, Inc. A PEN Inc. Company

Technology of Mind Over Matter

Applied Nanotech at a Glance

3006 Longhorn Blvd., Suite 107 Austin, TX 78758

ANI Introduction

- Located in Austin, Texas USA
- Founded in 1988
- Nanotechnology R&D with emphasis in:
 - 1) Thermal Management
 - 2) Nanocomposites
 - 3) Nanoelectronics
 - 4) Nanosensors
- Three pronged business model:
 - 1) R&D Services
 - 2) Product Prototyping for PEN Inc.
 - 3) Nanomaterials Sales

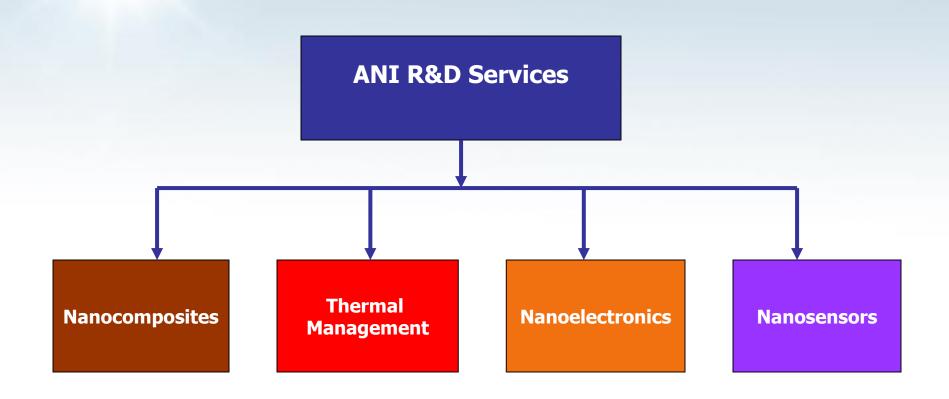
ANI's Business Model

Commercialization by PEN Inc.

- Prototyping
- Manufacturing

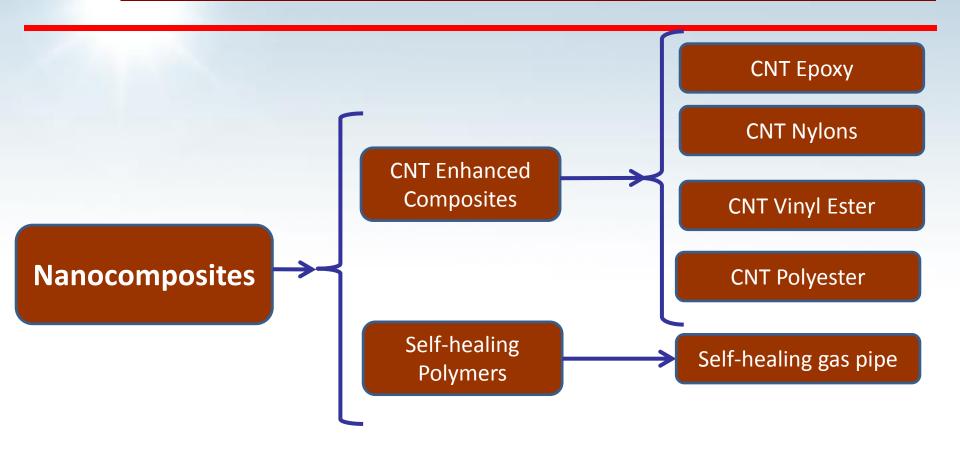
R&D Services

- Corporate Funding
- Government Contracts



- Inks and pastes
- Thermal management materials

Nanomaterials Sales

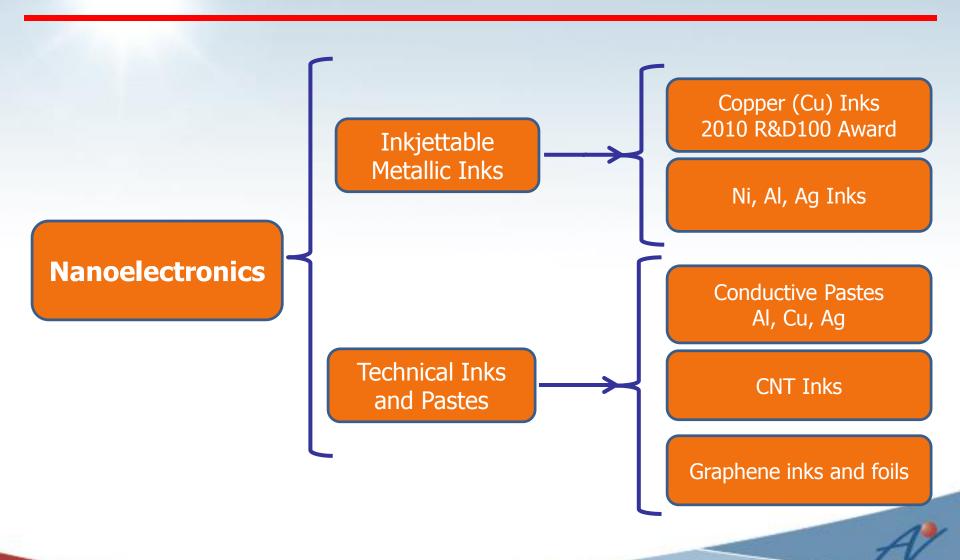


ANI's R&D Divisions

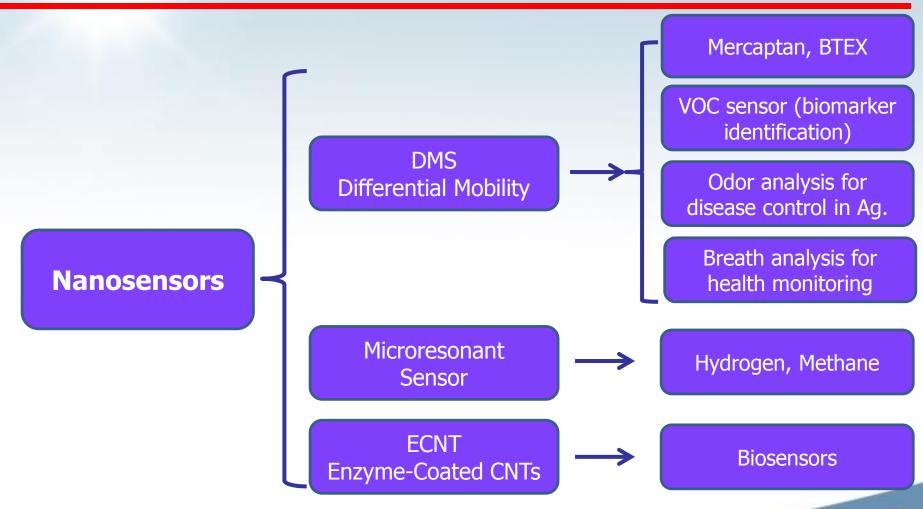
ANI's Nanocomposites Division

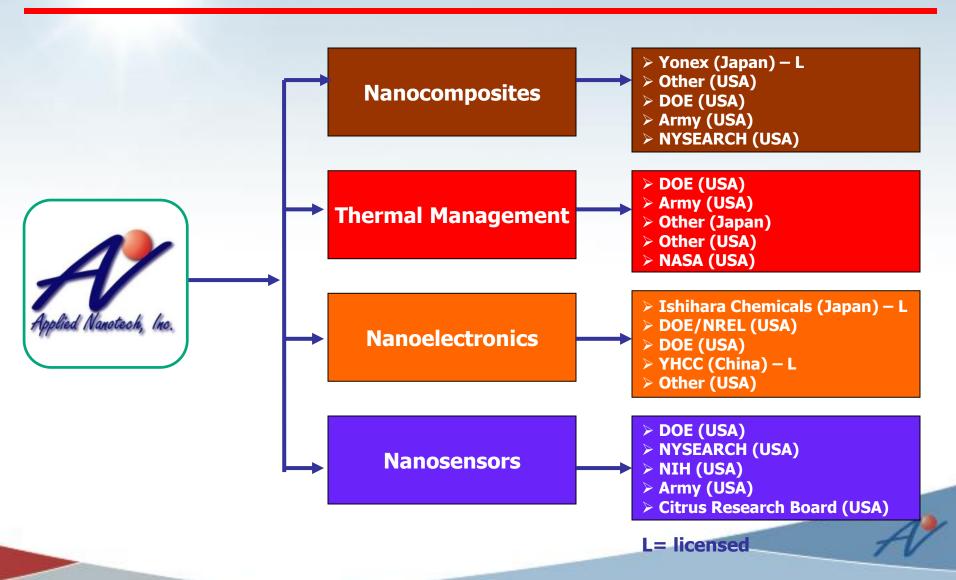
ANI's Thermal Management Division

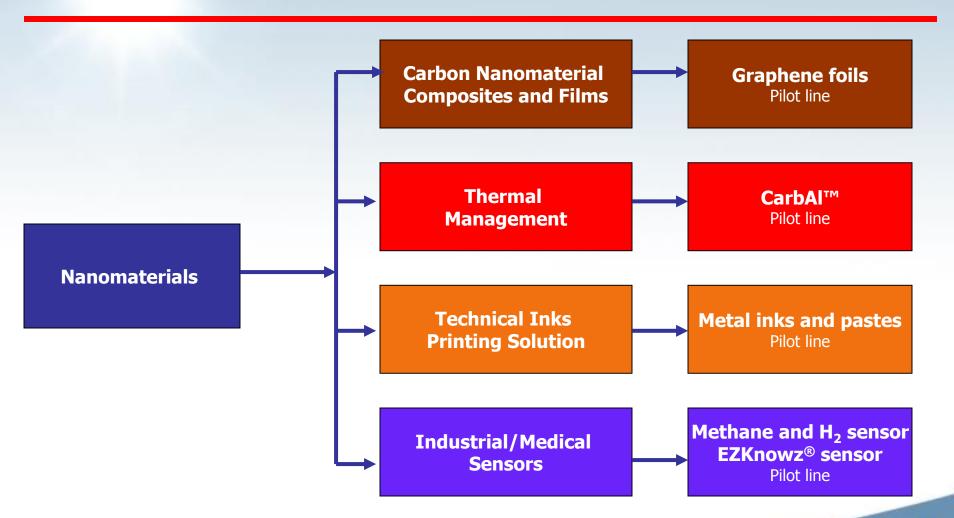
CarbAl™ Material 2009 R&D100 Award


Thermal Management

CarbAl[™] Electronic Packaging


NASA SBIR for thermal management on sattilites


ANI's Nanoelectronics Division


ANI's Nanosensors Division

Recent and Current Funded R&D Activities

Commercialization at Applied Nanotech

CNT Reinforced Epoxy

Description

CNR-1-250 is a carbon nanotube loaded resin that can be cured at 250°F. The base polymer system is a multifunctional epoxy that contains <2% by weight functionalized carbon nanotubes.

Features

- Improved flexural strength (+45%↑)
- Improved flexural modulus (+20%↑)
- Improved compression strength (+40%↑)
- Improved impact strength (+30%[↑])

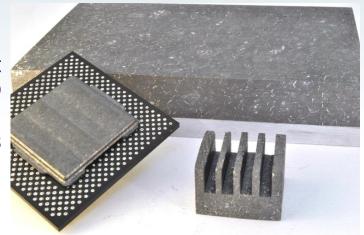
Application Areas

- Sporting goods and recreation
- Automotive
- Aerospace
- Marine

Complete set of Yonex EZONE golf clubs using ANI's CNT reinforced epoxy technology (Nanopreme™)

Yonex's badminton racquet (brand: VOLTRIC 80) using ANI's CNT reinforced epoxy technology (Nanopreme™)

NTM, Nano Thermal Management



■ The Need

Over 55% of failures in electronic components are due to high operating temperatures.

■ The Solution

- CarbAl[™] has been recognized as one of the 100 most significant product innovations in 2009 by R&D magazine.
- CarbAl™ composite thermal management material has a unique combination of
 - low-density $(1.75 2.1 \text{ g/cm}^3)$
 - high thermal diffusivity (2.9 cm²/s)
 - high thermal conductivity (350 450 W/mK)
 - low coefficient of thermal expansion (2 x 10⁻⁶ /K)

CarbAITM

CarbAl™ is an advanced thermal management material composed of a porous graphitic matrix that is impregnated with a molten aluminum alloy doped with a precise amount of an additive. The resulting material is 80% carbon and 20% aluminum (and other dopants) with greater than 90% filling of the pores.

Material Properties of CarbAl™

Thermal conductivity: 250-400 W/m-K

CTE: 7x10⁻⁶ /K

Specific heat: 0.75 J/gK

Specific gravity: 2.1 g/cm³

Bending strength: 40MPa

Young's modulus: 12 GPa

Application Areas

Heat spreaders
PCB substrates
IC packaging
Power Electronics
LED substrates and housing
Concentrated photovoltaics

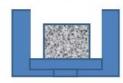
Production

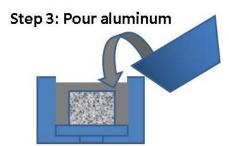
Overview of manufacturing process for CarbAl™

Step 1: Pre-heat carbon matrix, pressure mold, and aluminum

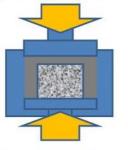
Step 2: Transfer heated block to heated mold

Step 3: Pour molten aluminum doped with additives into mold

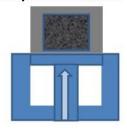

Step 4: High pressure impregnation


Step 5: Extract from mold and cooling

Step 6: Remove excess aluminum and finish CarbAl block

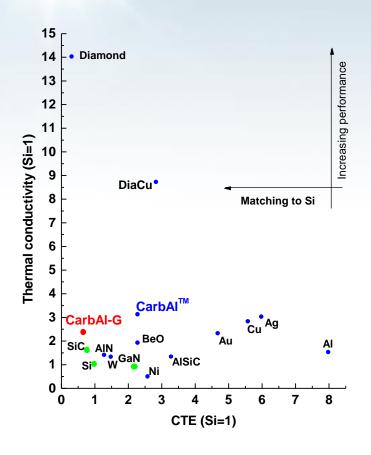

Carbon matrix
High pressure mold
Crucible

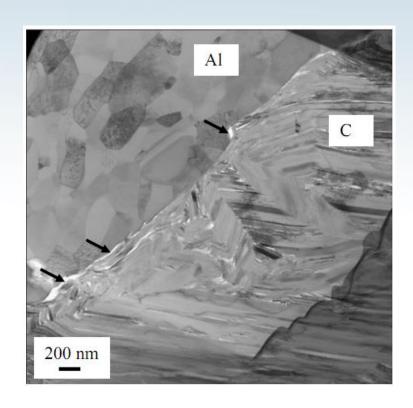
Step 2: Transfer block to mold



Step 4: Impregnation

Step 5: Extraction




Step 6: Finishing

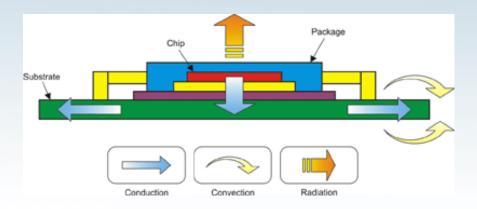
CTE Matching to Semiconductors

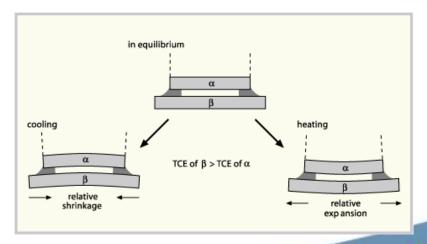
Thermal conductivity versus CTE values

Description of Technology

General Characteristics of CarbAl™

High thermal conductivity


- Graphitic planes transport thermal energy efficiently away from heat source
- Rapid spreading of heat from the point of creation to a dissipative heat sink and active cooling


Low coefficient of thermal expansion (CTE)

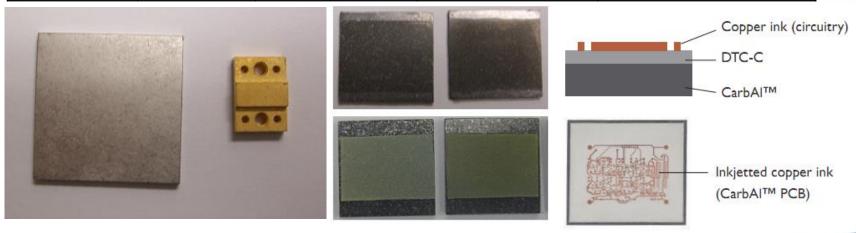
- Graphite minimizes thermal expansion for semiconductor applications
- CTE matched to materials such as silicon, gallium arsenide, and other commonly used materials to reduce stresses introduced by thermal mismatch
- Lower CTE = less thermal stress

Relative Mechanical stability

- Aluminum filling provides mechanical support and stability
- Compatible with standard machining processes

Competition

- CarbAl™ is a balance of key performance metrics and material properties with price of material
- High thermal conductivity (amount of heat that can be transferred), 1.5x to 2x of aluminum
- High thermal diffusivity (speed of heat spreading), over 3x of aluminum
- Low coefficient of thermal expansion (amount of material expansion due to heating) more than 2x better than copper and more than 3x better than aluminum
- Good mechanical properties
- Lightweight
- Price is comparable to copper


Material	Density (g/cm³)	CTE (ppm/K)	Thermal Conductivity (W/m-K)	Thermal Diffusivity (cm²/sec)	Bend Strength (MPa)	Young's Modulus (GPa)	Relative Cost
AlSiC	3	7 - 9	170 - 200	0.88	450	290	\$
CuW (10-20% Cu)	15.7-17.0	7 - 8	180 - 200		1172	367	\$\$\$
CuMo (15-20% Mo)	10	7 - 8	160 - 170			313	\$\$\$
Cu	8.96	17.8	398	1.1	330	131	\$
Al	2.7	23.6	238	0.84	137 - 200	68	<< \$
SiC	3.2	2.7	200 - 270	0.5	450	415	\$\$
AIN	3.3	4.5	170 - 200	1.47	300	310	\$\$
Beryllia	3.9	7.6	250		250	345	\$\$\$
Poco Graphite	0.9	1.02	245	-	2.7	-	\$\$
KFoam	0.48	0.69	220	0.48	2.1	-	\$\$
CVD Diamond	3.5	1 - 2	500 - 2200	10.5			\$\$\$\$\$\$
CarbAl™-N	2.1	7	400-450	2.78	40	12	\$\$
CarbAl™-G	1.75	2.0	180- 400	2.9	24	-	\$

CarbAl Components

Thercobond - Dielectric bonding material with high thermal conductivity

Surface Functionalized CarbAl TM					
	Thickness (um)	Breakdown Voltage (V)	Breakdown field (V/um)	Thermal conductivity (W/mK)	
Thercobond 1	23	2230	97	1-20	
Thercobond 2	35	2480	71	1-20	
Plated Ni	50	-	-	20-80	
Plated Au	50	-	-	100-300	

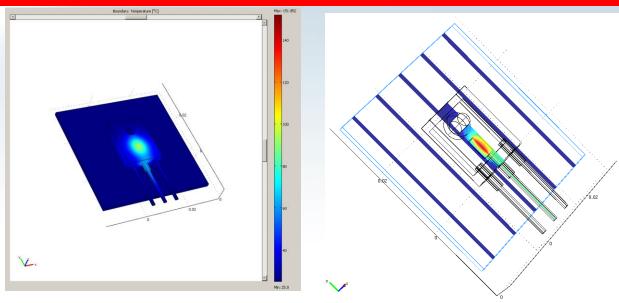
Ni-B and Au plated CarbAITM Dielectric layers and circuits on CarbAITM

NASA Phase II Technical Objectives

Phase II NASA SBIR "CarbAl™ Based Thermal Management for Space Flight Systems Applications" Contract No. NNX14CC23C

Applied Nanotech, Inc. (ANI) has developed a thermal management composite material that has a density less than aluminum, thermal properties close to copper and a coefficient of thermal expansion well matched to semiconductor materials.

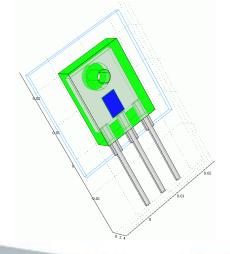
Current TRL level "6" (CarbAl components are sold commercially for non-NASA applications)


Objective 1: Refine Phase I thermal model for CarbAl-based thermal packaging that encompass specific thermal loads for high power transistors

Objective 2: Fabricate heat sink system for DC power conversion module.

Objective 3: Complete prototype CarbAl™ heat sink system for DC power conversion module.

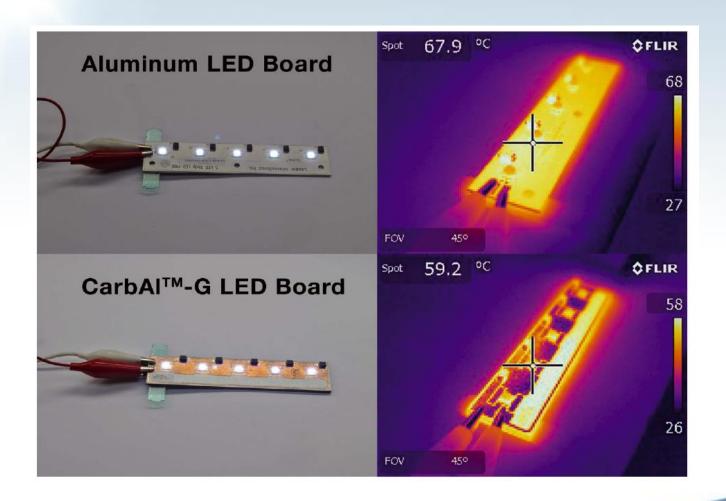
CarbAl heat sink modeling


Material	Thickness, mm	k, W/mK	Density, kg/m ³	Cp, J/kg·K
Aluminum	1.5	237	2700	897
CarbAl N	1.5	250/250/400	2100	750
CarbAl G	1.5	200/200/350	1750	690
Mold	3-5	0.84	1200	1200
Spreader	2	301	-	-
Leads	0.6	188	-	-
SiC	0.18; 0.36	149; k(T)	3210	670

CarbAl modeling and Experimental results

Parameter	Specifications
Manufacturer	CREE
Transistor type	SiC MOSFET
Maximum power, W	463
Maximum current, A	90
Max junction temperature, C	150
Max bare die temp, C	150
Die dimensions, mm	4.06x6.44x0.18
Die volume, mm3	4.68
Calculated die Tmax, k=const	151.9
Calculated die Tmax, k=k(T)	146.3

Heat sink	Max T _{die} , C
material (k)	(CREE)
CarbAl N	151.9
(250,250,400)	
CarbAl N	161.0
(400,250,250)	
CarbAl G	154.6
(200,200,350)	
CarbAl G	167.0
(350,200,200)	
Al (237)	163.0



Electric Load Tests:

Load	Gate, V	Drain	Drain	T _{block} , C	T _{chip} , C
circuit		current, A	power, W		•
Source	24	75	172	28.0	70.6
Source	12	68	255	27.3	85.0
Drain	12	39	565	39.5	122.0

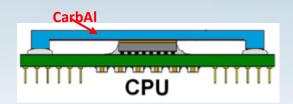
LED CarbAl™ Thermal Packaging

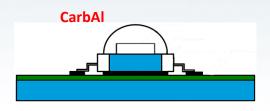
Functionalized CarbAl™ for Various Applications

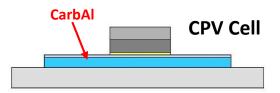
- (a) Ceramic dielectric layer on CarbAl™- G.
- (b) Polymeric dielectric layer on CarbAl™- G.
- (c) Cu plated on CarbAl™-G.
- (d) Al layer evaporated on CarbAl™-G.
- (e) Anodizes Al layer (insulating Al oxide layer) on CarbAl™-G.
- (f) Fully integrated CarbAl™-G with dielectric layers and Cu metallization for packaging 12 LEDs.
- (g) CarbAl™-G LED printed circuit board (PCB) using copper on ceramic layer.
- (h) CarbAl™-G LED printed circuit board (PCB) using copper on epoxy dielectric layer.
- (i) CarbAl™-G printed circuit board (PCB) for multiple LEDs on ceramic having a disc shape.

Military Applications and Market Segments

CPU Integrated Heat Spreaders

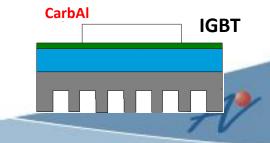



- Removes heat from hot spots on CPU processors for severs, desktops, laptops, mobile devices, and so on.
- Lids for CPU and GPU processors
- Currently use copper and aluminum lids but need better performance and CTE match as processors become faster and consume more power



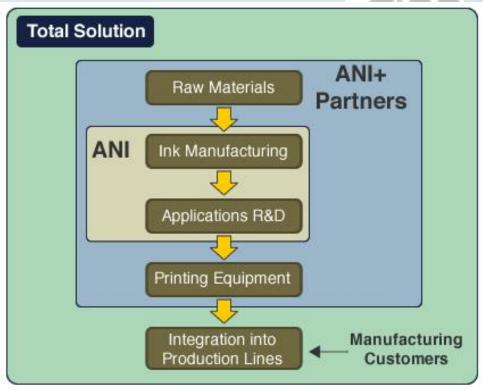
 PCBs and heat spreaders for: General lighting home and industrial, Backlights for LCD TVs, notebooks, and PC monitors, Automotive headlights and traffic signals.

Concentrated Photovoltaics



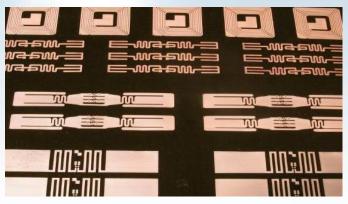
- Focus sun 100x to 1000x onto small photovoltaic cells using mirrors and lenses to increase efficiency up to 50%
- Thermal energy generated must be removed for lifetime and operating efficiency

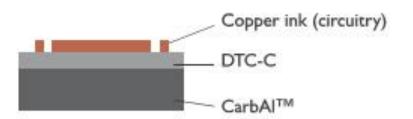
Power Electronics / IGBTs

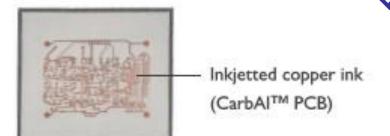

High current power electronics components in automotive, appliances, and industrial applications

TIPS, Technical Inks Printing Solutions

| R?D


- Core technologies: technical inks/pastes and nanoparticles
- Focus on printed electronics
- Total solution approach:
 - Raw materials (nanoparticles/chemicals)
 - Ink manufacturing (formulations/dispersions)
 - Applications R&D
 - Printing equipment/processes
 - Integration into high volume production
- Total ink printing solutions are offered in collaboration with strategic partners


TIPS, Technical Inks Printing Solutions



Cu inkjet printed on Kapton

Cu inkjet printed CarbAl high thermal conductivity material with dielectric that also has high thermal conductivity

EZKNOWZ® Industrial/Medical Sensors

- Sensors and nanotechnology have a complementary relationship since they both rely upon molecular level phenomena.
- Our sensors have performance advantages for all "3 Ss", namely:
 - Sensitivity,
 - Selectivity,
 - Specificity.
- Our sensor research is looking at critical problems in gas sensing, including:
 - Process monitoring and monitoring of natural gas streams,
 - Homeland security,
 - Health monitoring,
 - Odor and breath analysis,
 - Forensics,
 - Agricultural pathology applications.

