RADIATION DETECTORS FOR SPACE APPLICATIONS: DETECTOR DESIGN, FABRICATION AND CHARACTERIZATION

Presentation at NASA HBCU/MSI Technology Infusion Road Tour University Capabilities
September 29, 2016
Emmanuel Rowe, Ph.D.
Materials Science and Applications Group
COLLABORATORS:

- James Lambert, Carol Raymond, Jet Propulsion Laboratory (JPL), Pasadena, CA
- Julia Bodnarik & colleagues, Lunar & Planetary Laboratory, University of Arizona, Tucson, AZ
- Ashley Stowe, Y-12 National Security Complex Oak Ridge, TN
- Nerine Cherepy & Stephen Payne, LLNL, Livermore, CA
- Sebastien Kerisit, Pacific Northwest National Lab, Richland, WA
- Lynn Boatner, ORNL, Oak Ridge, TN
- Kanai Shah and Josh Tower, Radiation Monitoring Devices, Watertown, MA

Fisk’s Materials Science and Applications Group (MSAG):

- Emmanuel Rowe, Liviu Matei, Brandon Goodwin, Pijush Bhattacharyia, Kristal Morales, Vlad Buliga, Mike Groza, Jeremiah Afolabi, Maggie Zlibut
- UGs: Stephanie Morris, Lance Richards, Samuel Uba, Zachary Dickerson, Nati Carigano
- Grads: Dave Caudel, Rose Perea, John McGrew, Hugo Espejel, Jodie Hawk, Joseph Bell, Ardelia Clarke, Anna Egner, Crystal Cardenas, Jarrhett Butler, George Cooper and LaNell Williams

Fisk-Vanderbilt Master’s-to-PhD Bridge Program:

Support: NSF, DOE/NNSA, DHS/DNDO, DOD/DTRA, NIH/NMBIB/R23, Vanderbilt/Discovery Grant, Cal Tech/JPL
Materials Science and Applications Group

Field requirements / needs

- Materials Discovery (semi-empirical)
- Understanding Improving Crystal Growth Limitations
- Design & Fabrication Of Gamma & Neutron Sensors
- SNM Detection

Improved understanding / new devices

Crystal growth is the critical enabling
Pandora: Unlocking the mysteries of the moons of Mars
Chemical composition of planetary surfaces provides clues about their origins and evolution

- Power < 3 W
- Potential for commercial-off-the-shelf components
SrI₂ scintillators for planetary gamma-ray spectroscopy

Figure 1. Cartoon of gamma-ray production processes in the surface of planetary bodies. Galactic cosmic rays

Figure 2. Comparison of the average lunar gamma-ray spectrum, as acquired during the Lunar Prospector (black) and Kaguya (red) missions.

Figure 3. Illustration showing how energy resolution affects the ability to extract chemical information from a lunar gamma-ray spectrum.

http://spie.org/x115974.xml

SrI₂ technology may find uses on future manned missions, and their robotic precursors, to nearby asteroids.
BASIC EQUIPMENT USED IN RADIATION DETECTION

Legend: 1-NIM Minibin, 2-High Voltage Power Supply, 3-Multichannel Analyzer, 4- Pulser, 5- Shaping amplifier, 6-Low Voltage Power Supply, 7-Digital oscilloscope, 8- Analog Oscilloscope, 9-Fast preamplifier C6438 (for scintillators), 10-Charge sensitive preamplifier (A250CF), 11-PMT(R6231-100), 12-Radiation source
Design

Vibration testing at Fisk
Lithium Indium Disenlenide ($^6\text{LiInSe}_2$)

Single crystal of LiInSe$_2$ semiconductor for neutron detector

E. Tupitsyn,1,2* P. Bhattacharya,1 E. Rowe,1 L. Matel,1 M. Groza,1 B. Wiggins,1 A. Burger,1,2 and A. Stowe3

1Vanderbilt University, Department of Physics and Astronomy, Nashville, Tennessee 37235, USA
2Y-12 National Security Complex, Oak Ridge, Tennessee 37830, USA
3Fisk University, Department of Life and Physical Sciences Nashville, Tennessee 37208, USA

(Received 17 July 2012; accepted 8 October 2012; published online 12 November 2012)

Single crystals of semiconductor-grade lithium indium selenide (LiInSe$_2$) were grown using the vertical Bridgman method. The orthorhombic structure of the materials was verified using powder x-ray diffraction. The room temperature band gap of the crystal was found to be 2.85 eV using optical absorption measurements. Resistivity of LiInSe$_2$, obtained using current-voltage measurements, has semiconducting nature (decreases with increasing temperature) and is in order of 10^{10} Ω·cm. Photoc conductivity measurement showed the photocurrent peak at 445 nm. Nuclear radiation devices were fabricated, and alpha particle detection was observed, suggesting that this material could be a candidate for neutron detection applications. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4762002]

Z. Bell et al, 2015 SPIE Optics and Photonics, International Conference on Hard X-Ray, Gamma Ray and Neutron Detector Physics

LiInSe$_2$ Detection response

$^6\text{LiInSe}_2$, 12x7x1 mm3 Au contacts 5 mm dia.
600V, Sh.T 2us

Lithium Distillation - Scale up
Gas vent/vacuum

The Bridgman-Stockbarger with Accelerated Crucible Rotation Technique
- Percy Williams Bridgman, 1923
- Donald C. Stockbarger, 1935
- Hans J. Scheel, ACRT, 1971-72
LiInSe₂ prototype, CubeSat 2U

- Collaboration funded by Vanderbilt – Discovery grant
- Space is sufficient to add a Raspberry Pi computer (Linux)
- LiInSe₂ operates in scintillator mode with a single APD readout. Plan to test it for neutron detection at LPL – University of Arizona
Cesium hafnium chloride: A high light yield, non-hygroscopic cubic crystal scintillator for gamma spectroscopy

Arnold Burger, Emmanuel Rowe, Michael Groza, Kristle Morales Figueroa, Nerine J. Cherepy, Patrick R. Beck, Steven Hunter, and Stephen A. Payne

Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee 37208, USA
Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
Lawrence Livermore National Laboratory, Livermore, California 94550, USA

Published in APL Vol 107, on the web at http://dx.doi.org/10.1063/1.4932570

principal decay time is 4.37 µs

\(\lambda_{\text{max}} = 400 \text{ nm} \)

FWHM = 3.3% @ 662 keV
LY of 54,000 ph/MeV with silicon CCD photodetector

non-proportionality-limited resolution of 1.37% @ 662 keV
Detector Fabrication

Equipment:
diamond cutting wheel
diamond wire saws
8 in. Lapping Machine
e-beam evaporator
sputtering system
parylene coating system
Photolithography system
That's all Folks!