

SCIENCE

Opportunities for Engagement

Ellen Gertsen, Executive Officer Kartik Sheth, Program Scientist Florence Tan, Deputy Chief Technologist

- NASA Science Overview
- Enabling New Science
- Fostering Innovation
- Cultivating Mission Success

Science by the **NUMBERS**

TECHNOLOGY INNOVATION

~\$400M Invested Annually

RESEARCH

- ~10,000 U.S. Scientists Funded
- ~3,000 Competitively Selected Awards
- ~\$600M Awarded Annually

CUBESATS

22 Science Missions **15** Technology Demos

SOUNDING ROCKETS

- **16** Science Missions
- 3 Tech/Student Missions

25 Major Airborne Missions 8 Global Networks

BALLOONS

- 13 Science Payloads
- 1 HASP with up to
- **12** student experiments

Current as of May 1, 2018

Protect & Improve Life on Earth

Key Science THES

Search for Life Elsewhere

Discover Secrets of the Universe

- NASA Science Overview
- Enabling New Science
- Fostering Innovation
- Cultivating Mission Success

What is ROSES?

- It is the name for an omnibus NASA Research Announcement (NRA)
- Always released on Valentine's Day, February 14
- Basic and Applied Research in support of NASA's Science Mission Directorate (SMD)
- Contains many individual program elements, each with its own due date and topics

How to Read ROSES

- Appendix A: Earth Science Research Program
- Appendix B: Heliophysics Research Program
- Appendix C: Planetary Science Research Program
- Appendix D: Astrophysics Research Program
- Appendix E: Cross-Divisional Research Program

D.14

NASA Solicitation and Proposal Integrated Review and Evaluation System

NASA Research Announcement

SOFIA Next Generation Instrumentation

Solicitation: NNH18ZDA001N-SOFIA

Dates

Release Feb 14, 2018

Close Aug 01,

2018

Announcement Documents

- DUE DATES: Table 2 lists all program elements in due date order (.HTML)
- DUE DATES: Table 3 lists all program elements in appendix order (.HTML)
- > ROSES 2018 Summary of Solicitation (.PDF)
- Complete ROSES 2018 NRA as amended and clarified (.PDF)
- D.1 Astrophysics Research Program Overview (.PDF)
- D.14 SOFIA Next Generation Instrumentation as amended (.PDF)

D.14 Program Information

- Expected total program budget: \$15 20M over three years (higher values need adequate justification
- Number of new awards: One or more proposals selected to conduct ICS
- Maximum duration of awards: ICS phase to be approximately 5 months; the schedule for implementation and delivery of the selected instrument will be determined during the ICS
- Dates for Pre-proposal Workshops: Tuesday, April 3, 2018 at 2pm ET; Monday, April 16, 2018 at 4pm ET; Thursday, May 17, 2018 at 2pm ET

- NASA Science Overview
- Enabling New Science
- Fostering Innovation
- Cultivating Mission Success

Example of "Breakthrough" Innovation

Surface Water and Ocean Topography (SWOT) Mission

SWOT KA-BAND INTERFEROMETER ANTENNA MAST

Enabling Technology: Investments in Ka-band interferometer and precision antenna mast

Result: Unprecedented swath measurements of terrestrial water heights and sea surface heights (SWOT to launch in 2020)

Example of "Disruptive" Innovation

Cyclone Global Navigation Satellite System (CYGNSS)

Enabling Technology: Existing technology (delay mapping receiver) deployed in an unique constellation of 8 LEO spacecraft

Result: Frequent and accurate measurement of ocean surface winds will improve tropical cyclone forecasting

Example of "Game Changing" Innovation

HIGH MASS (700KG) HIGH POWER (700W)

NEW SPECTROMETER

LOW MASS (155KG) HIGH POWER (380W)

Enables a lower-cost, small satellite constellation mission

Enabling Technology: Investment in new spectrometer (Dyson replaces Offner)

Result: Small satellite constellations are the new paradigm for future hyper spectral imaging missions

- NASA Science Overview
- Enabling New Science
- Fostering Innovation
- Cultivating Mission Success

BALANCED MISSION PORTFOLIO LARGE **FLAGSHIP MEDIUM** SMALL National priority, **Medium priority** Focused, High priority, with moderate higher risk with civilization scale low risk limited budget science risk **CLASS A CLASS B** CLASS C CLASS D **GREAT SCIENCE**

Get Involved!

- NASA Solicitation Website: https://nspires.nasaprs.com/external/
- Research Resources: https://science.nasa.gov/researchers
- Review Panel Volunteers: https://science.nasa.gov/researchers/volunteer-review-panels
- Technology Resources: https://science.nasa.gov/technology
- Flight Mission Resources: https://soma.larc.nasa.gov/
- Student Resources: https://science.nasa.gov/learners/learner-opportunities

