Ball Aerospace

Scott Whitehill
Director, Supply Chain Management
Ball Aerospace

NASA HBCU/MI Technology Infusion Road Tour
Aug. 14-15, 2018
The Ball story

A history of innovation & customer partnership.

JARS TO STARS

From sustainable metal packaging products to ground-breaking aerospace and defense solutions, we enable our customers to succeed – no matter the challenge or mission.
Ball Aerospace
Who we are is in all we do.

GO BEYOND WITH BALL®

We pioneer discoveries that enable our customers to perform beyond expectation and protect what matters most.
Capabilities & Products
Our technologies deliver mission success.

AEROSPACE
- Missions
- Sensors & Instruments
- Spacecraft
- Ground Systems
- Components

TACTICAL
- Antenna Systems
- Electro-optical Systems
- Anti-jam Systems
- Mission Systems Analysis
- Pointing and Tracking
- Cryogenic Fuel Storage

INTELLIGENCE
- Data Processing & Analytics
- Cyber Security
- Human-Machine Teaming
- Laser Effects Research
- Modeling & Simulation
- Enterprise Data Management
Uncompromising Integrity

ACCOUNTABILITY

Every day, we Go Beyond® for our customers, each other and our community by delivering innovative solutions, creating a diverse and inclusive working environment and giving back.
60+ Years of Collaborating with NASA

DELIVERING NEXT-GENERATION
SCIENCE & TECH

JWST Hubble WFIRST Kepler/K2 New Horizons
IXPE JPSS-1 LANDSAT GMI

GO BEYOND.

9/24/18
Ball Supply Chain Management

- Define, develop, improve supply base
- Supplier assessment, approval
- Strategic make-buy process
- Technology/supply base expertise
- **Manage supplier relationships**
- Measure, report supplier performance

- Own, manage, optimize end-end performance of the Integrated Supply Chain (Material Flow)
- Agile data management
- Material planning
- Piece part value-add processing
- Material tracking, traceability, mgmt
- SCM data analytics

- Procure Direct Materials
- Solicit, evaluate, negotiate, award & manage subcontracts
- Procure indirect goods & services
- Sole source of legal authority/direction
- Support new business: acquisition strategy, supplier pricing
- Plan and execute small business plans
- Manage P card program

- **Supply Base Development**
 - Define, develop, improve supply base
 - Supplier assessment, approval
 - Strategic make-buy process
 - Technology/supply base expertise
 - **Manage supplier relationships**
 - Measure, report supplier performance

- **Material Flow**
 - Own, manage, optimize end-end performance of the Integrated Supply Chain (Material Flow)
 - Agile data management
 - Material planning
 - Piece part value-add processing
 - Material tracking, traceability, mgmt
 - SCM data analytics

- **Inventory & Distribution**
 - Ensure accuracy, document all receipts
 - Provide safe, effective storage & distribution of materials
 - Ensure proper, authorized release of materials to production
 - Provide required logistical support for program product delivery
 - Ensure product is properly and safely prepared for shipment
 - Establish cost effective shipping solutions

- **Acquisition**
 - Procure Direct Materials
 - Solicit, evaluate, negotiate, award & manage subcontracts
 - Procure indirect goods & services
 - Sole source of legal authority/direction
 - Support new business: acquisition strategy, supplier pricing
 - Plan and execute small business plans
 - Manage P card program

- **Verification**
 - Supplier quality management
 - Verification of incoming materials
 - Material traceability
 - Material testing
 - Dimensional measurement of hardware

- **Governance**
 - Maintain government-approved procurement system
 - Maintain BPL compliance
 - Maximize opps to small businesses, achieve acceptable rating by DCMA/SBA
 - Meet all Federal acquisition regulations
 - Comply with contractual financial reporting requirements
 - Maintain Environmental, Health and Safety compliance
Small Business Program

- 2012 NASA Small Business Industry Award (SBIA) winner
- 2011 DoD Nunn-Perry Mentor Protégé Award winner
- Completed NASA Mentor/Protégé agreement in support of OLI
- Actively participate in Small Business conferences

<table>
<thead>
<tr>
<th>AUDIT PERFORMANCE HISTORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
</tr>
<tr>
<td>2018</td>
</tr>
<tr>
<td>2016</td>
</tr>
<tr>
<td>2014</td>
</tr>
<tr>
<td>2009</td>
</tr>
<tr>
<td>2004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5-YEAR PERFORMANCE HISTORY</th>
<th>5-Year Overall Performance History*</th>
<th>5-Year NASA Performance History*</th>
<th>5-Year NASA Performance History*</th>
<th>Statutory Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Small Business Concern</td>
<td>SDB</td>
<td>2.7%</td>
<td>2.2%</td>
<td>2.9%</td>
</tr>
<tr>
<td></td>
<td>WOSB</td>
<td>6.3%</td>
<td>7.0%</td>
<td>6.2%</td>
</tr>
<tr>
<td></td>
<td>HBCU</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>HUBZone</td>
<td>0.4%</td>
<td>0.6%</td>
<td>0.3%</td>
</tr>
<tr>
<td></td>
<td>VOSB</td>
<td>1.9%</td>
<td>2.5%</td>
<td>1.5%</td>
</tr>
<tr>
<td></td>
<td>SD/VOSB</td>
<td>0.2%</td>
<td>0.3%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Total Small Business Content</td>
<td>32.4%</td>
<td>37.7%</td>
<td>30.5%</td>
<td>33.0%</td>
</tr>
</tbody>
</table>

*Percent of Subcontracted Work
Engaging with Universities/Colleges

Programs/missions
Research & development
Other

- Arizona State
- Boston University
- Colorado School of Mines
- Colorado State
- Columbia
- Florida International
- Georgia Tech
- Johns Hopkins
- Harvard
- Michigan State
- Montana State University
- Ohio State
- Ohio University
- Prairie View A&M
- U of Arizona
- U of California, Davis
- U of Colorado, Boulder
- U of Iowa
- U of Nebraska, Lincoln
- U of Texas, Austin
- Wilberforce University
- Wright State
How Do We Work Together?

BUSINESS SYSTEMS

- Robust accounting system
- Delineate costs
 - Labor
 - Material
 - Other direct costs
- Track labor hours, personnel
- Specified Labor Rates
- Ability to invoice
- Contracting
 - NDAs
 - Agreements
 - Intellectual Property
 - Conflicts of Interest
- Understanding of ITAR limitations
- Facility clearance for classified collaborations

TECHNICAL AREAS OF INTEREST

- Optical engineering
- Spacecraft engineering
- Instrument engineering
- Cyber
- Robotics
- 3D printing
- RF antennas
- Small satellites
- Artificial intelligence
- Mission analysis
- Algorithm development
- Advanced electronics
Example: Working with FIU

- Ball Aerospace subcontracted to Florida International University (FIU), a Minority Institution
- Worked with FIU on two mentor/protégé agreements

PROJECTS WITH FIU

Colorado Engineering, Inc. (CEI)
- FIU & Ball mentored CEI in the implementation of a Quality Management System
 - Readiness for AS9100 certification
 - International Traffic in Arms Regulations (ITAR) Training
 - Security Indoctrination Training including understanding the SF312
 - Electro-Static Discharge (ESD)
 - Lean Manufacturing Technology
 - Internal Audit Training (AS9100C)
 - Joint Personnel Adjudication System (JPAS)

Princeton Microwave Technology (PMT)
- FIU & Ball mentored PMT to improve delivery and enhance manufacturing performance
 - Enterprise Resource Planning (ERP) technology transfer and Manufacturing process technology support, including Selection of Enterprise Resource Planning tool
 - Readiness for AS9100 certification
 - Development of a layout for the protégé’s new facility that improved manufacturing efficiency and workspace utilization
 - Full and comprehensive Electro-Static Discharge training to improve workspace efficiency and safety
Let’s collaborate!

WE WANT TO GET TO KNOW YOU

Tell us more about:
- Your expertise
- Your business models
- Your desires
- What’s working/what’s not

CONTACT US

Scott Whitehill
Director, Supply Chain Mgmt
303-939-5762
swhitehi@ball.com

Caroline Grant
College Relations Lead
303-533-5337
cgrant1@ball.com

Visit us online at ball.com/aerospace
Deep Space Exploration Overview

Chris McCaa
Lockheed Martin Space
Deep Space Exploration

August 15, 2018
Lockheed Martin Business Areas

Aeronautics
- Tactical Fighters
- Tactical /Strategic Airlift
- Advanced Development
- Sustainment Operations

Missiles and Fire Control
- Air and Missile Defense
- Tactical Missiles
- Fire Control
- Combat Maneuver Systems
- Energy

Rotary and Mission Systems
- Naval Combat Systems
- Radar and Surveillance Systems
- Aviation Systems
- Training and Logistics Solutions
- DOD Cyber Security

Space
- Surveillance and Navigation
- Global Communications
- Human & Robotic Space Exploration
- Environmental Observation Systems
- Strategic and Defensive Systems
- Strategic / Operational Command & Control Systems
Civil Space Locations

- **Palo Alto, CA**
 - GOES-R, GLM, SUVI

- **Sunnyvale, CA**
 - GOES-R, GLM, SUVI, Orion

- **Denver, CO**
 - Orion, GOES-R, Deep Space Exploration, Mission Operations, Advanced Programs

- **Houston, TX**
 - Orion

- **New Orleans, LA**
 - Advanced Programs, Orion, STS

- **Crystal City, VA**
 - Government Relations

- **Kennedy Space Center, FL**
 - Orion

- **Greenbelt, MD**
 - Hubble MO, SS&ES

- **Valley Forge, PA**
 - SS&ES

- **Huntsville, AL**
 - Advanced Programs, STS
Deep Space Exploration Mission History

- **Viking** 1975
- **Magellan** 1989
- **Hubble Space Telescope** 1990
- **Mars Global Surveyor** 1996
- **Cassini (Prop)** 1997
- **Lunar Prospector** 1998
- **Stardust** 1999
- **Mars Odyssey** 2001
- **Genesis** 2001
- **Spitzer** 2003
- **Mars Reconnaissance Orbiter** 2005
- **Phoenix** 2007
- **Juno** 2011
- **GRAIL Aeroshell** 2011
- **MAVEN** 2013
- **OSIRIS–REx** 2016
- **InSight** 2018
- **Mars 2020 Aeroshell** 2020
- **Lucy** 2021
- **Futre Opportunities**
How to Partner with LM – Mission Team

• Prime Investigator (PI)
 – Responsible for the overall content and execution of the mission
 • Typically determined around initial Announcement of Opportunity (AO)

• Co-Investigator Roles (Co-I)
 – Instrument contribution
 • Typically determined prior to final Announcement of Opportunity (AO)

• Mission Science Team member
 – Material testing / Data Analysis
 • Determined anytime from AO to post-mission

• How to partner with LM
 – Important to develop reputation in science community
 • Write papers on science, instruments or analysis capabilities
 • Become part of deep space assessment groups and steering committees (terrestrial planets, small body, outer planets, etc)
 – How/who to contact at LM
 • Beau Bierhaus (LM Advanced Programs Scientist): edward.b.Bierhaus@lmco.com, 303-971-4240
 • Tim Linn (LM Advanced Programs Sr. Mgr.): timothy.m.linn@lmco.com, 303-977-0659
How to Partner with LM – Supplier

• How to partner with LM
 – LM is always looking for flight proven, low mass, low power, low cost hardware options for deep space missions
 – Visit the Lockheed Martin Portal to get started
 – If you have questions getting started:
 • Michelle Butzke, LM Supplier Relations Manager: michelle.butzke@lmco.com

• Recent examples of procured hardware
 – Command and Data Handling avionics hardware (processors, interface cards, etc.)
 – Guidance, Navigation and Control hardware (star trackers, inertial measurement units, sun sensors, etc.)
 – Telecom hardware (small deep space transponders, power amplifies, antennas, switches, etc.)
 – Propulsion hardware (tanks, thrusters, latch valves, pyro valves, etc.)
 – Solar arrays
Phoenix Descent Captured by MRO
Competing in the AO Process: An Industry Perspective

NASA HBCU/MI Technology Infusion Road Tour
August 13-14

Kendall Nii
Senior Director, Program Management
Four Operating Sectors at a Glance

<table>
<thead>
<tr>
<th>Aerospace Systems</th>
<th>Innovation Systems</th>
<th>Mission Systems</th>
<th>Technology Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomous Systems</td>
<td>Launch Vehicles</td>
<td>Airborne C4ISR Systems</td>
<td>Technology-differentiated, Mission Services and Training Systems</td>
</tr>
<tr>
<td>Strike Operations</td>
<td>Propulsion Systems</td>
<td>Cyber and Intelligence Mission Solutions</td>
<td>Logistics and Modernization of Military Equipment</td>
</tr>
<tr>
<td>Military and Civil Space Systems</td>
<td>Aerospace Structures</td>
<td>Land and Avionics C4ISR Mission Solutions</td>
<td>Global Sustainment Engineering and Support</td>
</tr>
<tr>
<td>Aircraft and Spacecraft Design, Integration and Manufacturing</td>
<td>Missile Products</td>
<td>Missile Defense and Protective Systems</td>
<td>New Innovative Logistics Products</td>
</tr>
<tr>
<td>Intelligence, Surveillance and Reconnaissance</td>
<td>Defense Electronic Systems</td>
<td>Navigation and Maritime Systems</td>
<td>Health IT</td>
</tr>
<tr>
<td>Protected Communications</td>
<td>Armament Systems</td>
<td>Space ISR Systems</td>
<td></td>
</tr>
<tr>
<td>Battle Management</td>
<td>Small Caliber Systems</td>
<td>Space ISRS</td>
<td></td>
</tr>
<tr>
<td>Missile Defense</td>
<td>Commercial Satellites</td>
<td>Engineering, Sciences and Technology</td>
<td></td>
</tr>
<tr>
<td>Space Exploration</td>
<td>Science and National Security Satellites</td>
<td>Civil Security and Public Safety Systems</td>
<td></td>
</tr>
<tr>
<td>Advanced Technologies</td>
<td>Human Space and Advanced Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

科技创新系统
- 发射车辆
- 推进系统
- 航空结构
- 导弹产品
- 防卫电子系统
- 武器系统
- 小口径系统
- 商用卫星
- 科学和国家安全卫星
- 空间组件
- 技术服务

任务系统
- 航空反导系统
- 网络和智能
- 任务解决方案
- 导弹防御和防护系统
- 导航和海上系统
- 空间ISR系统
- 工程、科学和技术
- 民用安全和公共安全系统
Our Products and Services for NASA’s AOs

Dedicated Launch Free Flyer Spacecraft
- Astrophysics, heliophysics, planetary and Earth science

Shared Ride Free Flyer Spacecraft
- ESPA ring mounted
- Propulsive ESPA rings

Launch Services
- Dedicated Pegasus
- Dedicated Minotaur-C
- Dedicated Antares

Observatory and Integration and Test
- Mission Integration

Mission Operations
- Complete suite of mission operations options from turn-key systems to on-site support

Thermally Stable Structures
- Deployable Booms and Trusses

Cygnus Hosted Payload
- Frequent flights to ISS orbit: 350 km, 51.6°
- Up to 1 year mission duration

Sounding Rockets and Scientific Balloons
- Management and execution
- Integration, test, operations

MEV Hosted Payload
- Geosynchronous or geosynchronous transfer orbit
- Mission duration up to 15 years
- Data delivered directly to SOC

GEOStar Hosted Payload
- Geosynchronous orbit
- Mission duration up to 15 years
- Data delivered directly to SOC
MIDEX
Heliophysics
PI: J. Burch
Mass: 536 Kg
Power: 250 W
Orbit: 1000 x 46004 km 90°
LV: Delta 7326
SC: L-M
Launch: 03-2000

WMAP
Astrophysics
PI: C. Bennett
Mass: 840 Kg
Power: 419 W
Orbit: L2 Lissajous
LV: Delta 7425
SC: GSFC
Launch: 06-2001

Swift
Astrophysics
PI: N. Gehrels
Mass: 1470 Kg
Power: 650 W
Orbit: 600 km Cir 20°
LV: Delta 7320
SC: NGIS
Launch: 11-2004

THEMIS
Heliophysics
PI: V. Angelopoulos
Mass: 126Kg x 5
Power: 37 W x 5
Orbit: 1.5Re x 10-30Re
LV: Delta 7295
SC: NGIS
Launch: 02-2007

WISE
Astrophysics
PI: N. Wright
Mass: 324 Kg
Power: 249 W
Orbit: 17 Re x 59 Re
LV: Falcon 9
SC: NGIS
Launch: 12-2009

TESS
Astrophysics
PI: G. Ricker
Mass: 324 Kg
Power: 249 W
Orbit: 17 Re x 59 Re
LV: Falcon 9
SC: NGIS
Launch: 2018

ICON
Heliophysics
PI: T. Immel
Mass: 258 Kg
Power: 240 W
Orbit: 550 km Cir 24°
LV: Pegasus
SC: NGIS
Launch: 2017

9 of the last 14 Explorer missions use our spacecraft
Industry Perspective on NASA AO Process

Science concepts meeting NASA requirements

- Teaming discussions
- Vet concepts
- Community Announcement

3-12 months

Teaming
- RFI, POD, re-proposals

Teamed!

Refine concepts
- Draft AO
- Freeze concept
- Start writing

6-12 months

AO release

Finish and submit the proposal (90 days)
- Wait….
- Answer Questions

Phase A selection!

Phase A
- Mature concept
- Submit the CSR

9-12 months

Submit CSR

Site visit
- Wait….
- Answer Questions

Selection for flight!

Site visit

Flight confirmation!

Phase C/D/E/F
- CDR, build, launch, operate
- Get science results

Science continues
Industry Perspective on NASA AO Process

• Responding to an AO is a marathon not a sprint
 – Getting an investigation selected for implementation takes several years
 – Great science is necessary to win, but
 – High risk always loses

• Examples of risk raisers
 – Poor traceability – unclear if instrument performance or mission design supports science objectives
 – Immature technology without good maturation plan
 – Proposed costs do not match cost models

• Engage with industry early in the process
 – Solicit industry input around the community announcement or before
 – Engagement can be formal (RFIs) or informal
 • Solicit our inputs to help define the mission and mission trades
 • Solicit our inputs to identify risks, costs, and fit
 – Select your team before the Draft AO release

Early engagement allows risk mitigation
Contact

• Kendall Nii
 – Senior Director, Program Management
 – 480-355-7787 or 480-261-4689
 – kendall.nii@ngc.com

• John Dyster
 – Senior Director, Business Development
 – 480-355-7739 or 480-435-5114
 – john.dyster@ngc.com
THE VALUE OF PERFORMANCE.